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Abstract. We study the Josephson oscillations of two coupled elongated condensates. Linearized calcu-
lations show that the oscillating mode uniform over the length of the condensates (uniform Josephson
mode) is unstable: modes of non zero longitudinal momentum grow exponentially. In the limit of strong
atom interactions, we give scaling laws for the instability time constant and unstable wave vectors. Be-
yond the linearized approach, numerical calculations show a damped recurrence behavior: the energy in
the Josephson mode presents damped oscillations. Finally, we derive conditions on the confinement of the
condensates to prevent instabilities.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 03.75.Kk Dynamic properties of condensates; collective and hydro-
dynamic excitations, superfluid flow

1 Introduction

Josephson oscillations arise between two Bose-Einstein
condensates coupled by tunneling effect. They have been
observed in superfluid helium [1] and in superconduc-
tors [2] and have recently been achieved in dilute atomic
BEC in a double well potential [3]. The physics of two
coupled condensates has been extensively studied in a two
modes model, where only two single particle modes are
involved [4,5]. For atoms interacting in each well through
a two-body interaction, different regimes are reached de-
pending on the ratio between the tunneling strength to
the interaction energy of atoms in each well [6,4]. For
small interaction energy, one expects to observe Rabi
oscillations. For large interaction energy one enters the
Josephson regime. In this regime, oscillations around equi-
librium configuration have a reduced amplitude in atom
number and their frequency depends on the mean field en-
ergy. Finally, for very large interaction energy, quantum
fluctuations are no longer negligible: the system is in the
so-called Fock regime and oscillations of atoms between
the wells do not occur any more. In this paper, we assume
this regime is not reached. Oscillations between the two
wells, both in the Rabi and in the Josephson regime, are
then well described by a mean field approach.

Atom chips [7] are probably good candidates to re-
alize Josephson oscillations of Bose-Einstein Condensates
as they enable the realization of micro-traps with strong
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confinement and flexible geometries. A possible configu-
ration to realize a tunnel coupling between BEC on an
atom-chip is proposed in [8]. In this proposal, the two
condensates are very elongated and are coupled all along
their longitudinal extension. With such an elongated ge-
ometry, both the Rabi and the Josephson regime could be
accessed. However, in this case, tunnel coupling may be
larger than the longitudinal frequency and the two modes
model a priori breaks down. In this paper, we are inter-
ested in the stability of the uniform Josephson mode where
all the atoms oscillate between the two wells independently
of their longitudinal position. In the absence of interaction
between atoms and if the transverse and longitudinal trap-
ping potentials are separable, the longitudinal and trans-
verse degree of freedom are decoupled and one expects
to observe stable Rabi oscillations between the conden-
sates. On the other hand interactions between atoms in-
troduce non linearities that may couple the two motions.
For a homogeneous situation such as atoms trapped in
a box-like potential, uniform Josephson oscillations are a
solution of the mean field evolution equations and are a
priori possible, even in presence of interactions between
atoms. However, the non linearities introduced by inter-
actions between atoms may cause instability of this uni-
form Josephson mode. Similar modulational instabilities
appear in many situations of nonlinear physics such as wa-
ter waves propagation [9] or light propagation in a non lin-
ear fiber [11]. In the context of Bose Einstein condensates,
they have been observed in presence of a periodic poten-
tial, at positions in the Brillouin zone where the effective
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mass is negative [12–14]. In our case a modulational insta-
bility would cause uniform Josephson oscillations to decay
into modes of non vanishing longitudinal momentum. The
goal of this paper is to investigate those instabilities.

We assume that all the relevant frequencies (interac-
tion energy and tunnel coupling) are much smaller than
the transverse oscillation frequencies in each well so that
we can consider only a one-dimensional problem. Thus,
the system we consider is described by the Hamiltonian

H =
∫
dz

{−�
2

2m

[
ψ†

1(z)
∂2

∂z2
ψ1(z) + ψ†

2(z)
∂2

∂z2
ψ2(z)

]

+ U(z)
[
ψ†

1(z)ψ1(z) + ψ†
2(z)ψ2(z)

]
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g

2

[
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1(z)ψ1(z)ψ1(z)+ψ

†
2(z)ψ

†
2(z)ψ2(z)ψ2(z)

]

−γ
[
ψ†

1(z)ψ2(z) + ψ†
2(z)ψ1(z)

]}
, (1)

where g is the one-dimensional coupling constant and U(z)
is the longitudinal trapping potential. For a harmonic
transverse confinement for which ω⊥ � �

2/(ma2), we
have g = 2�ω⊥a, where a is the scattering length [15].
The parameter γ describes the tunnel coupling.

We are interested in the stability of uniform Josephson
oscillations around the equilibrium configuration where
the two condensates have the same phase and equal lon-
gitudinal density. In Sections 2–4, we consider a homo-
geneous configuration where U(z) = 0. In Sections 2
and 3, we calculate the linearized evolution of modes of
non zero longitudinal momentum in the presence of uni-
form Josephson oscillations. In Section 2, we give results
of a calculation valid both in the Josephson and in the
Rabi regime. In Section 3, we show that, in the Josephson
regime, the system is well described by a modified
Sine-Gordon equation. For small amplitude oscillations,
we derive scaling laws for the instability time constant
and the wave vectors of the growing modes. In Section 4,
we go beyond the previous linearized approaches and
present numerical results. We observe damped oscillations
of the uniform Josephson mode amplitude. Such oscilla-
tions are similar to the Fermi-Pasta-Ulam recurrence be-
havior [16,17]. In the last section (Sect. 5), we present
numerical calculations in the case of a harmonic longi-
tudinal confinement. We show that Josephson oscillations
are stable for a sufficiently strong confinement and we give
an approximate condition of stability.

2 Numerical linearized calculation

To investigate whether Josephson oscillations are unsta-
ble with respect to longitudinal excitations, we use a lin-
earized calculation around the time-dependent solution
corresponding to uniform Josephson oscillations. Writ-
ing ψ1 = ϕ1 + δψ1 and ψ2 = ϕ2 + δψ2 with uniform
(z-independent) ϕ1,2, equation (1) gives to zeroth order

the coupled Gross-Pitaevski equations

i�
d

dt
ϕ1 = g|ϕ1|2ϕ1 − γϕ2 + (γ − ρ0g)ϕ1,

i�
d

dt
ϕ2 = g|ϕ2|2ϕ2 − γϕ1 + (γ − ρ0g)ϕ2. (2)

We shifted the zero of energy by adding to the Hamil-
tonian a “chemical potential” term γ − ρ0g, where ρ0 is
the density of each condensate at equilibrium. We recover
here the well known results established for a two modes
model [4–6]. More precisely, writing ϕ1 =

√
N1/L eiθ1

and ϕ2 =
√

(N −N1)/L eiθ2 where L is the size of
the system, equation (2) implies that the conjugate vari-
ables θ1 − θ2 and k = (N1 − N2)/2 evolve according to
the non rigid pendulum Hamiltonian Hp = ECk

2/2 +
EJ

√
1 − 4k2/N2 cos(θ1 − θ2) where the charge energy is

Ec = 2g/L and the Josephson energy isEJ = γN . We con-
sider oscillations of θ1−θ2 around 0 of amplitude Θosc. Let
us now consider the evolution of excitations around those
uniform oscillations. To first order in δψ1,2, equation (1)
yields the coupled Bogoliubov equations
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δψ1
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where, for i = 1, 2,

Li =
− �

2

2m
∂2

∂z2 + 2g|ϕi|2 − ρ0g + γ −gϕ2
i

gϕ∗
i
2 �

2

2m
∂2

∂z2 − 2g|ϕi|2 + ρ0g − γ




(4)

and the coupling term is

C =
(−γ 0

0 γ

)
. (5)

Instabilities arise if there exist modes growing exponen-
tially in time under equation (3). The evolution matrix is
invariant under translation so that we can study indepen-
dently plane waves modes eikz(u1, v1, u2, v2), the second
derivatives in L1 and L2 being replaced by −k2. Note that
the evolution of excitations depends only on the four pa-
rameters k, ρ0g, γ and Θosc. For a given k component, we
numerically evolve equations (2) and (3). Figure 1 gives
the evolution of the square amplitude of the symmetric
mode |us|2 = |u1 + u2|2 and of the antisymmetric mode
|ua|2 = |u1−u2|2 for two different k vectors, for γ = 0.1ρ0g
and for Θosc = 0.6. For these calculations, we choose
the initial condition as (u1, v1, u2, v2) = (1,−1,−1, 1).
In the two cases, we observe a fast oscillation at a fre-
quency close to the frequency of the antisymmetric mode√

(2ρ0g + 2γ + �2k2/2m)(2γ + �2k2/2m) and a slower os-
cillation at a frequency close to that of the symmetric
mode

√
(2ρ0g + �2k2/2m)�2k2/2m [18]. On top of this,

we observe, for k = 0.1, an exponential growth e2Γt of
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Fig. 1. Evolution of the square amplitude of the symmetric
(fat lines) and antisymmetric (thin lines) excitations of wave
vector k = 0.1

√
mρ0g/� (a) and k = 0.3

√
mρ0g/� (b). Those

graphs are computed for γ = 0.1ρ0g and a uniform Josephson
oscillation amplitude Θosc = 0.6.

|u1 + u2|2 and |u1 − u2|2, signature of an unstability. We
find that, for given ρ0g and Θosc, the instability domain
in k is [0, kmax]. Figure 2 gives the maximum growth rate
Γ and the maximum unstable wave vector kmax.

3 Calculation in the Josephson limit

In this section, we focus on the Josephson regime where
γ � ρ0g [10]. In this regime the amplitude of oscilla-
tions in the relative density δρ remains small compared
to the mean density and one can assume ρ1 = ρ2 in
the Josephson energy term of the Hamiltonian. Further-
more, we restrict ourselves to long wavelength excitations
described by phonons and we neglect anharmonicity of
phonons. Then, the Hamiltonian reduces to

HJ = Hs +HSG +Hc, (6)

where, writing ψ1 =
√
ρ1e

iθ1 , ψ2 =
√
ρ2e

iθ2 , θa = θ1 − θ2,
θs = θ1 + θ2, ρa = (ρ1 − ρ2)/2 and ρs + ρ0 = (ρ1 + ρ2)/2,

Hs =
∫ (

�
2ρ0

4m

(
∂θs

∂z

)2

+ gρ2
s

)
dz (7)

describes the symmetric phonons,

HSG =
∫ (

�
2ρ0

4m

(
∂θa

∂z

)2

+ gρ2
a − 2γρ0(cos(θa) − 1)

)
dz

(8)
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Fig. 2. Maximum instability rate of excitations (a) and max-
imum wave vector k of unstable modes (b) as a function of
the amplitude of the relative phase oscillations for γ = 0.05ρ0g
(stars and solid line) γ = 0.1ρ0g (crosses and dashed line) and
γ = 0.2ρ0g (circles and dotted line). The points are the results
of the linearized numerical calculations presented in Section 2
and are given with a precision of 10%. The continuous lines are
given by diagonalising the four by four matrix as presented in
Section 3.

is the Sine-Gordon Hamiltonian and

Hc = −2γ
∫
ρs(cos(θa) − 1)dz (9)

is a coupling between the symmetric and antisymmetric
modes. The Sine-Gordon Hamiltonian has already been
introduced in the physics of elongated supraconducting
Josephson junction [2]. In those systems, symmetric modes
would have a very large charge and magnetic energy and
do not contribute. The Sine-Gordon model has been exten-
sively studied [19]. In particular, it has been shown that,
for a Sine-Gordon Hamiltonian, oscillations of well defined
momentum (in particular k = 0) present Benjamin-Feir
instabilities [19]. Our system is not described by the
Sine-Gordon Hamiltonian because of the presence of Hc.
In the following, we derive results about stability of our
modified Sine-Gordon system. As we will see later, we re-
cover results close to that obtained for the Sine-Gordon
model.

The Josephson oscillations correspond to oscillations
where ρa = ρosc and θa = θosc are independent of z. They
are given by



∂ρosc

∂t
= 2γρ0 sin(θosc)/�

∂θosc

∂t
= −2gρosc/�

. (10)
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M =




i(−ωa + ωJ + γΘ2
oscf

2
a/4) − iγΘoscfa/(2fs) γΘoscfa/(2fs) −γΘ2

oscf
2
a/8

iγΘoscfa/fs/2 iωs 0 −γΘoscfa/(2fs)

γΘoscfa/(2fs) 0 −iωs −iγΘoscfa/(2fs)

−γΘ2
oscf

2
a/8 γΘoscfa/(2fs) iγΘoscfa/(2fs) i(ωa − ωJ − γΘ2

oscf
2
a/4)




(16)

They also induce an oscillation θ(s)osc of θs given by

∂θ
(s)
osc

∂t
= −2γ (cos(θosc) − 1) /�. (11)

To investigate whether some non vanishing k modes are
unstable in presence of a Josephson oscillation, we lin-
earize, as in the previous section, the equation of motion
derived from equation (6) around the solution ρosc, θosc.
Because of translational invariance, we can study indepen-
dently the evolution of modes of well defined longitudinal
wave vector k. Writing ρ1 = ρ0 + ρosc + (δρa + δρs)eikz ,
ρ2 = ρ0−ρosc+(−δρa+δρs)eikz , θ1 = (θ(s)osc +θosc +(δθs+
δθa)eikz)/2, and θ2 = (θ(s)osc − θosc + (δθs − δθa)eikz)/2, we
find the evolution equation

�
d

dt




δρa/ρ0

δθa

δρs/ρ0

δθs


 =




0 −�
2k2

2m + 2γ cos(θosc) 2γ sin(θosc) 0
−2ρ0g 0 0 0

0 0 0 −�
2k2

2m

0 2γ sin(θosc) −2ρ0g 0




×




δρa/ρ0

δθa

δρs/ρ0

δθs


 . (12)

We solved numerically equations (10, 12) and we find
that modes of low k wave vectors are unstable. Figure 3
gives the instability rate and the maximum k wave vec-
tor of unstable modes. Those results agree within 10%
to the more general results of the previous section as
long as γ/ρ0g < 0.2 and the oscillation amplitude fulfills
Θosc < 0.6.

To get more insight into the physics involved and to ob-
tain scaling laws for the instability rate and the instability
range in k, we will perform several approximations. The
evolution matrix M of equation (12) is periodic in time
with a period ωJ . We can thus use a Floquet analysis [20]
and look for solutions of equation (12) in the form

eiνt
+∞∑

n=−∞
einωJ tcn = eiνt

+∞∑
n=−∞

einωJ t



c1n

c2n

c3n

c4n


 . (13)

Expanding equation (12) for each Fourier component, we
find

νcn = −ωJncn − iM0cn − i
∑
m

Mmcn−m, (14)

where the time independent matrices Mn are the Fourier
components

Mm =
ωJ

2π�

∫ 2π
ωJ

0

e−imωJ tM(t)dt. (15)

Thus, solutions of equation (12) are found as eigenvalues
of the linear set of equations (14). The mode is unstable if
there exists an eigenvalue of non vanishing real part and
its growth rate is the real part of the eigenvalue.

For Θosc = 0, only the dc component M0

is not vanishing and its eigenvalues are ±ωa =
±i√2ρ0g(2γ + �k2/2m) and ±ωs = ±i�k√ρ0g/m cor-
responding, for each Fourier component n, to the sym-
metric modes c(s)± n

and antisymmetric modes c(a)
± n

. The
four states c(a)

− −1
, c(s)− 0

, c(s)+ 0
and c

(a)
+ 1

form a subspace
almost degenerate in energy and of energy far away from
the other states as depicted Figure 4. Thus, we will restrict
ourselves to those states in the following. In the limit of os-
cillations of small amplitude Θosc, the matrix elements of
M can be expanded to second order in θosc. Furthermore,
the oscillations are well described by θosc = Θosc cos(ωJ t),
where ωJ = 2

√
γρ0g(1 − Θ2

osc/16)/�. We then find that,
in the 4-dimensional subspace spanned by (c(a)

− −1
, c(s)− 0

,

c
(s)
+ 0

,c(a)
+ 1

), the eigenvalue ν of equation (14) are the eigen-
values of the four by four matrix

see equation (16) above

where fa = (2ρ0g/(�2k2/2m + 2γ))(1/4) and fs =
(4mρ0g/�

2k2)(1/4).
We numerically diagonalise this matrix and find the

instability rate as the largest real part of the eigenval-
ues. For a given oscillation amplitude Θosc, scanning the
wave vector k, we find the largest instability rate and the
maximum wave vector of unstable modes. Figure 3 com-
pare those results with the values obtained by integration
of equation (12). We find a very good agreement in the
range θ < 0.6 and γ/ρ0g < 0.1. Finally, in Figure 2, we
compare the instability rate and the maximum unstable
wave vector found with this simplified Floquet analysis
with the more general results of Section 1. We find a very
good agreement as long as γ/ρ0g < 0.2 and Θosc < 0.6.
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Fig. 3. Comparison between numerical evolution of equa-
tions (10, 12) (points) and the results obtained by diagonal-
ising the 4 by 4 matrix of the Floquet representation (lines).
Parameters are γ = 0.1 × ρ0g (stars and continuous lines) and
γ = 0.05 × ρ0g (crosses and dashed line).
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Fig. 4. Floquet representation of the equation (12). The ellipse
surrounds the four states that are considered in the calculation
of instability rates.

If we restrict ourselves to terms linear in Θosc, then
the only effect of the Josephson oscillations is to intro-
duce a coupling between the symmetric and antisym-
metric mode. We checked that this coupling alone does
not introduce any instability. Thus instability is due to
the quadratic terms. Those terms contain a modulation
at 2ωJ . This modulation corresponds to the modulation
of the frequency of the antisymmetric mode

ω2
a = 2ρ0g(�2k2/2m+ 2γ − 2γΘ2

osc/4)

+ γρ0gΘ
2
osc cos(2ωJ t). (17)
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Fig. 5. Maximum instability rate normalized to the Josephson
oscillation frequency (a) and maximum wave vector of unsta-
ble modes normalized to

√
mγ/� (b) as a function of the os-

cillations amplitude Θosc for different ratios γ/ρ0g (from lower
curves to upper curves: 0.02, 0.06, 0.1, 0.14). Fat dashed lines
are the scaling laws equations (18, 19). Thin continuous lines
are found by diagonalising the matrix of equation (16).

This parametric oscillation leads to instability for k ∈
[0, Θosc

√
mγ/2/�] and the instability time constant at res-

onance is Γ = Θ2
osc

√
γρ0g/8�. We recover here the well

known results of Benjamin-Feir instability derived for ex-
ample in [19] using the multiple-scale perturbation tech-
nique. In our case, the coupling to the symmetric mode
will modify those values. However, for small values of γ,
the qualitative behavior is unchanged. Indeed, as seen in
Figure 5, as long as γ < 0.05ρ0g and within a precision
of 10%, the instability rate Γ scales as

Γ = 0.122(1)Θ2
osc

√
γρ0g/� (18)

and the maximum wave vector of unstable modes as

kmax = 0.97(1)
√
mγ

�
Θosc. (19)

For larger γ, the Γ and kmax are higher than those lows
as seen in Figure 5.

4 Beyond the linearisation

The two previous sections give a linearized analysis of the
evolution of perturbations. They show that the presence
of uniform Josephson oscillations produces instabilities of
modes of non vanishing momentum. The energy in these
mode grows and consequently, the energy of the uniform
Josephson mode decreases and one expects a decrease of
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Fig. 6. Evolution of the number of atoms in the condensate 1,
normalized to the total number of atoms, as a function of time.
The initial state corresponds to a phase difference between the
condensate Θosc = 0.6 superimposed on phase and density
fluctuations corresponding to a thermal equilibrium at tem-
perature kBT = 0.1ρ0g. For this calculation, γ = 0.1ρ0g (a)
and γ = ρ0g (b).

the uniform Josephson oscillations amplitude. Such a de-
crease is beyond the previous linearized analysis and we
perform full numerical calculation of the evolution of the
mean fields ψ1(z, t) and ψ2(z, t). The evolution equations
derived from equation (1) are



i�
d

dt
ψ1 = − �

2

2m
d2ψ1

dz2
+ g|ψ1|2ψ1 − γψ2

i�
d

dt
ψ2 = − �

2

2m
d2ψ2

dz2
+ g|ψ2|2ψ2 − γψ1

. (20)

Figure 6 gives the evolution of the total number of atoms
in the condensate 1, N1 =

∫ |ψ1|2, for initial ampli-
tude Θosc = 0.6 and for different values of γ/(ρ0g).
For these calculations, the initial state consists in a
z-independent phase difference Θosc between ψ1 and ψ2

superposed on thermal fluctuations of the density and
phase of the two condensates corresponding to a tempera-
ture kBT = ρ0g/10. We observe that the amplitude of the
Uniform Josephson Oscillations presents damped oscilla-
tions. For γ � ρ0g, the period of these amplitude oscil-
lations is about three times the inverse of the instability
rate of equation (18). The ratio between the Josephson
frequency and the frequency of these amplitude oscilla-
tions is about 20 and is almost independent on the ratio
between γ and ρ0g as long as γ < ρ0g. For larger γ, this
ratio increases and more Josephson oscillations are seen
in a period of the amplitude modulation. Such amplitude
oscillations are a reminiscence of the Fermi-Ulam-Pasta

t/(π/
√
γρ0g)

N
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Fig. 7. Evolution of the number of atoms in the condensate 1,
normalized to the total number of atoms, as a function of time
for γ = ρ0g and an initial phase difference between conden-
sates Θosc = π/2. Initial thermal population of excited modes
corresponding to kBT = 0.1ρ0g is assumed.

recurrence behavior observed in many non linear systems
with modulational instabilities [16,17,19]. In particular,
this recurrence behavior has been seen in numerical evo-
lution of the Sine-Gordon Hamiltonian [21]. In our case,
we observe an additional damping which results probably
from the coupling to symmetric modes.

The case of an initial amplitude Θosc = π/2 is of
particular interest as, in absence of interactions between
atoms, it corresponds to Rabi oscillations of maximum
amplitude. Figure 7 gives the evolution of N1 for γ = ρ0g
and an initial amplitude Θosc = π/2.

5 Case of a confined system

In the previous sections, we considered large and homoge-
neous systems. We found that unstable excited modes are
those of low wave vectors. In the Josephson limit where
γ � ρ0g, we derived the scaling law equation (19) for the
maximum unstable wave vector. In a cloud trapped in a
box like potential of extension L, the minimum k value of
the excitation modes is 2π/L. Thus, if

L <
2π�

1.0
√
mγΘosc

, (21)

the minimum wave vector of excited modes is larger than
the maximum unstable k value equation (19) and the sys-
tem is stable. This condition can be understood in a dif-
ferent way: the energy of the lowest longitudinal mode is
�2π

√
ρ0g/(mL) (here we assume L � �/

√
mρ0g). Thus,

we find that the system is stable provided that the energy
of the lowest excited mode satisfies Eexc > 0.52ωJΘosc

where ωJ = 2
√
γρ0g/� is the Josephson frequency.

An approximate condition of stability of Josephson os-
cillations in the case of a cloud trapped in a harmonic
longitudinal potential of frequency ω is found as follows.
The size of cloud, described by a Thomas Fermi profile, is
L = 2µ/(mω2), where µ = ρ0g is the chemical potential
and ρ0 the peak linear density. Then, from the same argu-
ment as above, one expects to observe stable oscillations
for

ω > α
√
γρ0gΘosc = αΘoscωJ/2 (22)
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Fig. 8. Josephson oscillations of clouds trapped in a harmonic
potential of frequency ω = 0.1ρ0g/� (solid line) and ω = ρ0g/�

(dashed line), where ρ0 is the peak linear density in each con-
densate. The initial phase difference between the condensates
is π/2 and the tunnel coupling is γ = ρ0g. N1 is the number of
atoms in the condensate 1 and Ntot the total number of atoms.

where α is a numerical factor close to one. We performed
numerical simulations of the evolution in the case of a
harmonic potential, adding to both left hand sides of
equations (20) a trapping potential 1/2mω2z2. The ini-
tial situation is the Thomas Fermi profile superposed on
thermal random fluctuations and a global phase difference
between the condensates Θosc = π/2. The tunnel coupling
is γ = ρ0g. The resulting Josephson oscillations are shown
in Figure 8 for ω = ρ0g/� and ω = 0.1ρ0g/�. We ob-
serve that for ω = ρ0g/�, Josephson oscillations are stable
whereas, for ω = 0.1ρ0g/�, oscillations are unstable.

6 Conclusion and prospects

We have shown that Josephson oscillations of two cou-
pled elongated condensates are unstable with respect to
excitations of longitudinal modes. The unstable modes
are those of small wave vectors. In the Josephson limit
where γ � ρ0g, we have derived the scaling lows equa-
tion (18, 19) for the instability time constant and wave
vectors. Since the frequency of Josephson oscillations are
2
√
γρ0g, the first equation tells us that the number of oscil-

lations that can be observed scales as Θ2
osc and is indepen-

dent on γ/ρ0g. This is true as long as γ < ρ0g. For larger
γ/(ρ0g), the Josephson condition is not fulfilled. Effect
of interactions is less pronounced and more oscillations
can be observed. Performing numerical calculations be-
yond the linearized approach, we have shown that the sys-
tem presents a recurrence behavior, although it is damped
quickly. Finally, we investigated the stability of oscillations
in finite size systems. Equation (21) gives the maximum
longitudinal size of confined condensate that enables the
presence of stable Josephson oscillations. We also consid-
ered the case of harmonically trapped cloud and give an
approximate condition on the oscillation frequency to have
stable Josephson oscillations.

The results of this paper are not changed drasti-
cally for finite temperature. Indeed, although elongated
Bose-Einstein condensates present thermally excited lon-
gitudinal phase fluctuations [22,23], it has been shown

in [18] that, because the antisymmetric modes present
an energy gap, thermal fluctuations of the relative phase
between elongated coupled condensates are strongly sup-
pressed.

Among the possible extensions of this work, two ques-
tions are of immediate experimental interest. First, the
effect of a random longitudinal potential could be inves-
tigated. Indeed, it has been proposed to realized elon-
gated coupled condensates using magnetic trapped formed
by micro-fabricated wires [8], but, for such systems, a
roughness of the longitudinal potential has been ob-
served [24–26]. If the amplitude of the roughness potential
is smaller than the chemical potential of the condensate,
one expects to still have a two single elongated conden-
sate. However, the roughness of the potential may change
significantly the results of this paper. Second, the effect
of correlations between atoms may be studied. Indeed,
for large interactions between atoms, correlations between
atoms become important. More precisely, for ρ0 < mg/�2,
a mean field approach is wrong and the gas is close to the
Tonks-Girardeau regime [27–29]. Such a situation is not
described in this paper in which a mean field approach
has been assumed. Thus, a new study should be devoted
to the physics of coupled elongated Tonks gas.

Dynamical instabilities of the uniform Josephson mode
are not the only effect of non linearities in the system
of two coupled elongated condensates and other interest-
ing phenomena are expected. For instance, reference [30]
shows that Josephson vortices similar to the solitons of
the Sine-Gordon model exist for large enough interaction
energy.
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8. J. Estève, T. Schumm, J.-B. Trebbia, I. Bouchoule, A.

Aspect, C.I. Westbrook, Eur. Phys. J. D 35, 141 (2005)
9. T.B. Benjamin, J.E. Feir, J. Fuid Mech. 27, 417 (1967)

10. We also consider that γ � gρ0/N
2, N being the total num-

ber of atoms, so that quantum fluctuations of the relative
phase are negligible.

11. K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 49, 236
(1986)

12. L. Fallani et al., Phys. Rev. Lett. 93, 140406 (2004)



154 The European Physical Journal D

13. B. Wu, Q. Niu, Phys. Rev. A 64, 061603 (2001)
14. V.V. Konotop, M. Salerno, Phys. Rev. A 65, 021602 (2002)
15. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)
16. H.C. Yuen, W.E. Ferguson, Phys. Fluids 21, 1275 (1978)
17. E. Infeld, Phys. Rev. Lett. 47, 717 (1981)
18. N.K. Whitlock, I. Bouchoule, Phys. Rev. A 68, 053609

(2003)
19. A.C. Newell, Solitons in Mathematics and Physics (Society

of Industrial and Applied Mathematics, Philadelphia,
USA, 1985), p. 43

20. J.H. Shirley, Phys. Rev. 138, B979 (1965)
21. D. Barday, M. Remoissenet, Phys. Rev. B 43, 7297 (1991)
22. S. Dettmer et al., Phys. Rev. Lett. 87, 160406 (2001)

23. S. Richard, F. Gerbier, J.H. Thywissen, M. Hugbart, P.
Bouyer, A. Aspect, e-print arXiv:cond-mat/0303137
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